## Your GHG Audit Toolkit: Audit Prep Made Simple Pt. 1

How do you get your GHG inventory audit-ready?

Liu Xinlu

Principal Decarbonisation Specialist, Terrascope

01. How to build a GHG inventory02. What to aim for03. Best data quality indicators when preparing a GHG inventory04. How an audit usually goes

### 01. How to build a GHG inventory

02. What to aim for03. Best data quality indicatorswhen preparing a GHG inventory04. How an audit usually goes

### What are the standards used for building an inventory?



The GHG Protocol is one of the common standards used for GHG inventory calculations. There are a few key standards relevant to us:

- The GHG Protocol Corporate Accounting and Reporting Standard
- Corporate Value Chain (Scope 3) Standard
- Product Life Cycle Accounting and Reporting Standard
- Guidances for specific scopes and sectors:
  - Scope 2 Guidance;
  - Scope 3 Calculation Guidance;
  - Agriculture Guidance, soon to be replaced by Land Sector and Removal Guidance



ISO standards are international standards formulated by experts, and determine best practices. Several key standards and guidance are relevant to us:

• ISO 14064 is the International Standard for GHG Emissions Inventories and Verification which is commonly adopted.

ISO Standards are largely aligned with and even derived from the GHG Protocol

The difference between these two standards is that the GHG Protocol identifies, explains, and provides options for GHG inventory best practices, while ISO 14064 establishes minimum standards for compliance with these best practices. Terrascope's focus is on understanding and aligning with GHG Protocol, which is the highest standard.

### Overview of key steps around GHG inventory creation



01. How to build a GHG inventory 02. What to aim for

03. Best data quality indicatorswhen preparing a GHG inventory04. How an audit usually goes

#### What to aim for

# Compliance and achievement of these five main principles gets you a good report

### Consistency

Use consistent methodologies, approaches, boundaries, etc. to allow for meaningful comparison of emissions across assets and over time



### Completeness

Account for and report on all GHG emission sources

#### © 2024 Terrascope

Determining the right accounting approach blends business reality with overall strategy, which depends on identifying:



### **Consolidation approach**

Business operations can vary in their legal and organizational structures. Setting organizational boundaries needs an approach for consolidating GHG emissions and then applies the selected approach to define the businesses and operations that constitute the company for the purpose of accounting and reporting GHG emissions.



#### **Business units in scope**

In line with the earlier principle, this identifies the extent of the carbon accounting involved, and the stakeholders needed to be engaged for this effort. This identifies whether subsidiaries in other countries, or joint ventures with other companies will be included within.



### **Baseline year of measurement**

Setting a base year, and is a benchmark for assessing progress. Consistent, and accurate carbon accounting involves good baselining, and being consistent with one's accounting.

### An example of a scope inventory

| Category           | <b>Relevance (Y/N)</b><br>(Is this relevant for the<br>reporting company, regardless<br>of whether it is material?) | <b>Coverage (Y/N)</b><br>(Is this covered in the measurement?) | Emission boundary<br>covered<br>(Please provide emission<br>sources if covered) | Exclusions, limitations,<br>and justifications<br>(Please note down any<br>exclusions and any<br>justification) | <b>Data availability</b><br>(Please describe the type of<br>data available for this scope<br>category) |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Scope 1            |                                                                                                                     |                                                                |                                                                                 |                                                                                                                 |                                                                                                        |  |
| Stationary sources | Y                                                                                                                   | Y                                                              | E.g. natural gas used in<br>kitchen stoves                                      | NIL                                                                                                             | Natural gas used in liters                                                                             |  |
| Mobile sources     | NA - company does not<br>have company vehicles                                                                      | Ν                                                              | NA                                                                              | NA                                                                                                              | NA                                                                                                     |  |
| Process emissions  | NA - company operations<br>do not have process<br>emissions                                                         | Ν                                                              | NA                                                                              | NA                                                                                                              | NA                                                                                                     |  |
| Fugitive emissions | Y                                                                                                                   | Y                                                              | E.g. refrigerant used in air conditioning                                       | NIL                                                                                                             | Type and amount of refrigerant used in liters                                                          |  |

### Advantages and disadvantages of primary vs secondary data

|               | Primary data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Secondary data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Definition    | Data from specific activities within a company's value chain                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Data that is not from specific activities within a company's value chain                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Advantages    | <ul> <li>Most optimal representation of company's specific value chain activities</li> <li>Enables performance tracking and benchmarking of individual value chain partners and to distinguish between suppliers in the same sector based on GHG</li> <li>performance</li> <li>Allows companies to better track progress toward GHG reduction targets</li> <li>Expands GHG awareness, transparency, and management throughout the supply chain to the companies that have direct control over emissions</li> </ul> | <ul> <li>Allows companies to calculate emissions when primary data is unavailable or of insufficient quality</li> <li>Can be useful for accounting for emissions from activities that are not significant in their supply chain</li> <li>Can be more cost-effective and easier to collect</li> <li>Allows companies to more readily understand the relative magnitude of various scope 3 activities, identify hot spots, and prioritize efforts in primary data collection, supplier engagement, and GHG reduction efforts</li> </ul> |  |
| Disadvantages | Primary data is more costly and resource intensive to<br>collect<br>• Can be difficult to determine or verify the source and<br>quality of primary data supplied by value chain<br>partners                                                                                                                                                                                                                                                                                                                        | <ul> <li>Data may not be always representative of the company's specific activities</li> <li>Does not reflect operational changes undertaken by value chain partners to reduce emissions</li> <li>Could be difficult to quantify GHG reductions from actions taken by specific facilities or value chain partners</li> <li>May limit the ability to track progress toward GHG reduction targets</li> </ul>                                                                                                                            |  |

01. How to build a GHG inventory
02. What to aim for
<u>03. Best data quality indicators</u> when preparing a GHG inventory
04. How an audit usually goes

### Five data quality indicators help companies obtain best available data

| Data quality indicator     |               | Description                                                                                                           | Example of less accurate data                                                                                                  | Example of more accurate data                                                                                        |
|----------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Representativeness of data | Technological | Degree to which dataset<br>reflects actual<br>technology(ies) used                                                    | Data where technology is unknown<br>e.g. Match organic tomato to general<br>tomato                                             | Data generated using the same<br>technology<br>e.g. Match organic tomato to organic<br>tomato                        |
|                            | Temporal      | Degree to which the data<br>set reflects the actual time<br>(e.g year) or age of the<br>activity                      | Data with more than 10 years of<br>difference or the age of the data are<br>unknown<br>e.g. EF last updated in the year, 2000. | Data with less than 3 years of<br>difference<br>e.g. EF that is updated as of year<br>2021 for a 2022 inventory year |
|                            | Geographical  | Degree to which the data<br>set reflects the actual<br>geographic location of the<br>activity<br>e.g. country or site | Data from an area that is unknown<br>e.g. Matching to a EF that belongs to a<br>completely country (Asia)                      | Data from the same area<br>e.g Matching to Fuel EF (Switzerland) or<br>Fuel EF (Europe)                              |

### Five data quality indicators help companies obtain best available data

| Data quality indicator          |              | Description                                                                                                                                                                                                                                                                                                                            | Example of less accurate data                                                                          | Example of more accurate data                                                                                                      |
|---------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Quality of data<br>measurements | Completeness | Degree to which the data is<br>statistically representative of<br>the relevant activity.<br>Completeness includes the %<br>of locations for which data is<br>available and used out of the<br>total number that relate to a<br>specific activity.<br>Completeness also addresses<br>seasonal and other normal<br>fluctuations in data. | Data includes less than 50% of sites<br>for shorter time period or<br>representativeness<br>is unknown | Data includes all relevant sites over an<br>adequate time period to even out normal<br>fluctuations                                |
|                                 | Reliability  | Degree to which the sources,<br>data collection methods and<br>verification procedures used<br>to obtain the data are<br>dependable.                                                                                                                                                                                                   | Non-qualified estimate<br>e.g. Dataset that has no source of<br>methodology and verification           | Verified data based on measurements<br>e.g. Dataset has followed through clear<br>documentation of methodology and<br>verification |

01. How to build a GHG inventory02. What to aim for03. Best data quality indicators when preparing a GHG inventory04. How an audit usually goes

### Main assurance providers

- Big 4
- Specialised inspection agencies
- ESG consultancies



### What standards are usually used by auditors?

#### AA1000 Accountability Assurance

- AccountAbility Principles (AA1000AP): outlines standards of inclusivity, materiality, and responsiveness, which guide organisations in engagement stakeholders effectively and addressing relevant sustainability issues
- Assurance Standard (AA1000AS): provides framework for assurance of sustainability reports, allowing organisations to obtain either moderate or high assurance regarding their sustainability performance.
- Stakeholder engagement standard (AA1000SES): offers guidelines for designing and implementing effective stakeholder engagement processes.

#### ISAE 3000 / SSAE 3000

International Standard on Assurance Engagements / Statements on Standards for Attestation Engagements

- International Standard on Assurance Engagements (ISAE 3000): applies to a wide range of assurance engagements, including GHG reporting. It emphasises principles of independence, ethical behaviour, and professional skepticism during the audit process.
- Statement on Standards for Attestation Engagements (SSAE 3000): similar to ISAE 3000 but tailored for use in the United States.

#### Levels of assurance

- Limited assurance: basic review that provides lower level of confidence regarding the accuracy of reported data.
- Reasonable assurance: more thorough evaluation, often involving site visits and detailed assessments of data collection methods.

### How an audit usually goes

#### 01

#### Measurement

What emissions are measured within this organisation's GHG inventory? What is the scope, what are the assumptions made, and what is the baseline year of this inventory?

#### **02a**

#### **Process Verification**

How is the inventory produced? What quality assurances are there, and what controls are implemented to get this inventory?

#### 02b Data Verification

### Are these numbers reproducible by an independent third party? What

quantitative analysis was used to assess these numbers? What is the guality of the data used?

#### **03**a

#### Trend Assessment

What broader trends can be observed from the data, against baseline years? Are emissions expected to increase or decrease depending on the scope of a company's inventory?

#### 03b

#### Overall Assessment

Does the absolute magnitude of emissions make sense for a client's size? Does the relative size of emissions across categories make sense? If an audit has been conducted before, how do collected results compare against historical measurement?

### 03c

#### Assurance

Once the auditor is satisfied with the results of the audit, and that the customer has clarified its methodology, the auditor provides an assurance statement that varies depending on the agreed-upon level of assurance.



# Thank you for your time

Let's work together for a sustainable future and keep our planet habitable for all.

See how we can support your journey





© 2024 Terrascope